Read Article
Related Articles
Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid.
Nguyen LN
et al.
Nature
2014
Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.
Wong BH
et al.
Journal of Biological Chemistry
2016
Structural Insights into the Transport Mechanism of the Human Sodium-dependent Lysophosphatidylcholine Transporter MFSD2A.
Quek DQ
et al.
Journal of Biological Chemistry
2016
Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome
Alicia Guemez-Gamboa 1
et al.
Nature Genetics
2015
A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome
Vafa Alakbarzade
et al.
Nature Genetics
2015
Insights into major facilitator superfamily domain-contaning protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far?
Eser Ocak P
et al.
Journal of Neuroscience Research
2020
Mfsd2a is critical for the formation and function of the blood-brain barrier
Ayal Ben-Zvi
et al.
Nature
2014
Major facilitator superfamily domain-containing protein 2a (MFSD2A) has roles in body growth, motor function, and lipid metabolism
Justin H Berger
et al.
PLoS ONE
2012
The Lysophosphatidylcholine Transporter MFSD2A Is Essential for CD8 + Memory T Cell Maintenance and Secondary Response to Infection
Ann R Piccirillo
et al.
J Immunol
2019
Lysophosphatidylcholine as a carrier of docosahexaenoic acid to target tissues
M Lagarde
et al.
World Rev Nutr Diet
2001
Plasma BDNF is a more reliable biomarker than erythrocyte omega-3 index for the omega-3 fatty acid enrichment of brain
Dhavamani Sugasini
et al.
Scientific Reports
2020
Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis
Benjamin J Andreone
et al.
Neuron
2017
Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis
Benjamin J Andreone
et al.
Neuron
2017
Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation
Brian Wai Chow
et al.
Neuron
2017
The Cellular and Molecular Landscapes of the Developing Human Central Nervous System
John C Silbereis
et al.
Neuron
2016
Blood-brain barrier: a dual life of MFSD2A?
Zhao Z
et al.
Neuron
2014
Lipidomics reveals a remarkable diversity of lipids in human plasma
Oswald Quehenberger
et al.
J Lipid Res.
2010
A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2
Cécile Esnault
et al.
Proc Natl Acad Sci USA
2008
Characterization of plasma unsaturated lysophosphatidylcholines in human and rat
M Croset
et al.
Biochem J.
2000
The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeys
D R Illingworth, O W Portman
et al.
Biochem J .
1972
Transport of lysolecithin by albumin in human and rat plasma
S Switzer
et al.
The Journal of Lipid Research
1965
Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin
Lands W E
et al.
J Biol Chem.
1960
J Biol Chem. 2016 Apr 29;291(18):9383-94. doi: 10.1074/jbc.M116.721035. Epub 2016 Mar 4.

Structural Insights into the Transport Mechanism of the Human Sodium-dependent Lysophosphatidylcholine Transporter MFSD2A.

April 29, 2016
Quek DQ(1), Nguyen LN(2), Fan H(3), Silver DL(4).

1) From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857.

2) the Department of Biochemistry, Yong Loo Lin School of Medicine, and.

3) the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 138671 Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore 117545, and fanh@bii.a-star.edu.sg.

4) From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857, david.silver@duke-nus.edu.sg

Abstract

Major facilitator superfamily domain containing 2A (MFSD2A) was recently characterized as a sodium-dependent lysophosphatidylcholine transporter expressed at the blood-brain barrier endothelium. It is the primary route for importation of docosohexaenoic acid and other long-chain fatty acids into fetal and adult brain and is essential for mouse and human brain growth and function. Remarkably, MFSD2A is the first identified major facilitator superfamily member that uniquely transports lipids, implying that MFSD2A harbors unique structural features and transport mechanism. Here, we present three three-dimensional structural models of human MFSD2A derived by homology modeling using MelB- and LacY-based crystal structures and refined by biochemical analysis. All models revealed 12 transmembrane helices and connecting loops and represented the partially outward-open, outward-partially occluded, and inward-open states of the transport cycle. In addition to a conserved sodium-binding site, three unique structural features were identified as follows: a phosphate headgroup binding site, a hydrophobic cleft to accommodate a hydrophobic hydrocarbon tail, and three sets of ionic locks that stabilize the outward-open conformation. Ligand docking studies and biochemical assays identified Lys-436 as a key residue for transport. It is seen forming a salt bridge with the negative charge on the phosphate headgroup. Importantly, MFSD2A transported structurally related acylcarnitines but not a lysolipid without a negative charge, demonstrating the necessity of a negatively charged headgroup interaction with Lys-436 for transport. These findings support a novel transport mechanism by which lysophosphatidylcholines are "flipped" within the transporter cavity by pivoting about Lys-436 leading to net transport from the outer to the inner leaflet of the plasma membrane.

Keywords
DHA
EPA
Drug transport
Brain metabolism
Blood-brain barrier
Major facilitator superfamily domain containing 2a (Mfsd2a)
Lysophospholipid
LPC
RELATED