Read Article
Related Articles
Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid.
Nguyen LN
et al.
Nature
2014
Lipase Treatment of Dietary Krill Oil, but Not Fish Oil, Enables Enrichment of Brain Eicosapentaenoic Acid and Docosahexaenoic Acid.
Yalagala PCR
et al.
Molecular Nutrition & Food Research
2020
Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice
Dhavamani Sugasini
et al.
Scientific Reports
2017
Mfsd2a: A Physiologically Important Lysolipid Transporter in the Brain and Eye
Wong BH
et al.
In: Jiang XC. (eds) Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Advances in Experimental Medicine and Biology
2020
Enrichment of brain docosahexaenoic acid (DHA) is highly dependent upon the molecular carrier of dietary DHA: lysophosphatidylcholine is more efficient than either phosphatidylcholine or triacylglycerol
Dhavamani Sugasini
et al.
The Journal of Nutritional Biochemistry
2019
The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain
Jia Pei Chan
et al.
PLoS Biology
2018
Dietary lysophosphatidylcholine-EPA enriches both EPA and DHA in the brain: potential treatment for depression
Poorna C. R. Yalagala
et al.
Journal of Lipid Research
2019
Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome
Alicia Guemez-Gamboa 1
et al.
Nature Genetics
2015
A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome
Vafa Alakbarzade
et al.
Nature Genetics
2015
Insights into major facilitator superfamily domain-contaning protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far?
Eser Ocak P
et al.
Journal of Neuroscience Research
2020
Child Head Circumference and Placental MFSD2a Expression Are Associated to the Level of MFSD2a in Maternal Blood During Pregnancy
María Sánchez-Campillo
et al.
Frontiers in Endocrinology
2020
The Lysophosphatidylcholine Transporter MFSD2A Is Essential for CD8 + Memory T Cell Maintenance and Secondary Response to Infection
Ann R Piccirillo
et al.
J Immunol
2019
Homozygous mutation in MFSD2A, encoding a lysolipid transporter for docosahexanoic acid, is associated with microcephaly and hypomyelination
Tamar Harel
et al.
Neurogenetics
2018
Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain
M Lagarde
et al.
Journal of Molecular Neuroscience
2001
Preferential incorporation of sn-2 lysoPC DHA over unesterified DHA in the young rat brain
F Thies
et al.
American Journal of Physiology
1994
Lysophosphatidylcholine as a carrier of docosahexaenoic acid to target tissues
M Lagarde
et al.
World Rev Nutr Diet
2001
Perspective: The Potential Role of Circulating Lysophosphatidylcholine in Neuroprotection against Alzheimer Disease
Richard D Semba
et al.
Advances in Nutrition
2020
Omega-3 PUFA metabolism and brain modifications during aging
Hillary Chappus-McCendie
et al.
Prog Neuropsychopharmacol Biol Psychiatry
2019
Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline
Tanya Gwendolyn Nock
et al.
Biochim Biophys Acta Mol Cell Biol Lipids.
2017
Docosahexaenoic acid prevents cognitive deficits in human apolipoprotein E epsilon 4-targeted replacement mice
Raphaël Chouinard-Watkins
et al.
Neurobiology of Aging
2017
Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis
Benjamin J Andreone
et al.
Neuron
2017
Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases
Amanda Lo Van
et al.
Biochimie
2016
Mfsd2a-based pharmacological strategies for drug delivery across the blood-brain barrier
Jing-Zhang Wang
et al.
Pharmachological Research
2016
The Cellular and Molecular Landscapes of the Developing Human Central Nervous System
John C Silbereis
et al.
Neuron
2016
Efficient Docosahexaenoic Acid Uptake by the Brain from a Structured Phospholipid
Mayssa Hachem
et al.
Molecular Neurobiology
2015
Blood-brain barrier: a dual life of MFSD2A?
Zhao Z
et al.
Neuron
2014
Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) - Implications for dietary recommendations
Philippe Guesnet
et al.
Biochimie
2011
DHA deficiency and prefrontal cortex neuropathology in recurrent affective disorders
Robert K McNamara
et al.
J Nutr.
2010
The aging human orbitofrontal cortex: decreasing polyunsaturated fatty acid composition and associated increases in lipogenic gene expression and stearoyl-CoA desaturase activity
Robert K McNamara
et al.
Prostaglandins Leukot Essent Fatty Acids
2008
Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors
Nicolas G Bazan
et al.
Trends Neurosci
2006
The role of essential fatty acids in development
William C Heird
et al.
Annu Rev Nutr
2005
Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid
N Bernoud
et al.
Journal of Neurochemistry
2002
The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeys
D R Illingworth, O W Portman
et al.
Biochem J .
1972
Maternal DHA and the development of attention in infancy and toddlerhood
John Colombo
et al.
Child Dev.
2004
Pharmacol Res . 2016 Feb;104:124-31. doi: 10.1016/j.phrs.2015.12.024. Epub 2015 Dec 30.

Mfsd2a-based pharmacological strategies for drug delivery across the blood-brain barrier

February 1, 2016
Jing-Zhang Wang 1, Ning Xiao 2, Ying-Zhou Zhang 2, Chao-Xian Zhao 3, Xin-Hua Guo 4, Li-Min Lu 5

1Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China; Handan First Hospital, 25 Cong Tai Road, Handan 056001, PR China. Electronic address: wangjingzhang1981@gmail.com.

2Handan Central Hospital, 15 South Zhong Hua Street, Handan 056001, PR China.

3Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.

4Department of Medicine, College of Medicine, Hebei University of Engineering, Handan 056002, PR China.

5Handan First Hospital, 25 Cong Tai Road, Handan 056001, PR China.

Abstract

The blood-brain barrier (BBB) keeps the central nervous system (CNS) safe from various brain diseases, while the BBB makes it difficult for effective drugs to enter the CNS. Mfsd2a is specifically expressed on the cell membrane of brain-microvascular endothelial cell (BMEC) and is implicated in the delivery of some substances across the BBB. Mfsd2a is the first inhibitor of the transcytosis and the first transporter for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA) in BMECs. The crucial dual function of Mfsd2a puts forward two kinds of Mfsd2a-based strategies for carrying drugs from blood to the CNS. First, the reversible inhibition of Mfsd2a may temporarily induce a general disinhibition of the transcytosis in BMECs to transport macromolecular drugs across the BBB (Strategy One). Second, Mfsd2a could be used for the transport of some small-molecule drugs chemically coupled to LPC across the BBB (Strategy Two), which is quite similar to the carrier-mediated transport (CMT) via the glucose transporter (GluT1) and the L-type amino acid transporter 1 (LAT1). We here analyze and discuss the clinical significance of the two Mfsd2a-based strategies, including therapeutic potential, available pharmaceuticals, side effects, administration procedures, and disease types. In summary, the regulatory role of Mfsd2a deepens our knowledge of the function of the BBB, potentially contributing to the effective drug delivery in the treatments for neurodegenerative diseases, brain tumors, and life-threatening infections in the CNS.

Keywords
Drug transport
Blood-brain barrier
Major facilitator superfamily domain containing 2a (Mfsd2a)
RELATED