The metabolic fate of docosahexaenoic acid (DHA) was evaluated from its intake as a nutrient in triglycerides and phosphatidylcholines to its uptake by target tissues, especially the brain. Several approaches were used including the kinetics and tissue distribution of ingested 13C-labeled DHA, the incorporation of radiolabeled DHA injected as its nonesterified form compared to the fatty acid esterified in lysophosphatidylcholine (lysoPC), and the capacity of the two latter forms to cross a reconstituted blood-brain barrier (BBB) consisting of cocultures of brain-capillary endothelial cells and astrocytes. The results obtained allow us to raise the hypothesis that lysoPC may represent a preferred physiological carrier of DHA to the brain.